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Buoyancy-driven convection in cylindrical geometries 
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Department of Chemical Engineering, Stanford University, California 

(Received 23 January 1968 and in revised form 24 September 1968) 

Numerical solutions to the Boussinesq equations containing a temperature- 
dependent viscosity are presented for the case of axisymmetric buoyancy-driven 
convective flow in a cylindrical cell. Two solutions, one with upflow and the other 
with downflow at the centre of the cell, were found for each set of boundary 
conditions that were considered. The existence of these two steady-state regimes 
was verified experimentally for the case of a cylindrical cell having rigid insulat- 
ing lateral boundaries and isothermal top and bottom planes. 

Using a perturbation expansion it is also shown that only one of these solutions 
remains stable in the subcritical rhgime. This, however, seems to be confined 
to a very narrow range of Rayleigh numbers, beyond which, according to all the 
evidence presently at hand, both solutions are equally stable for those values of 
the Rayleigh and Prandtl numbers for which axisymmetric motions occur. 

Finally, certain fundamental differences between the problem considered here 
and that of thermal convection in a layer of infinite horizontal extent are briefly 
discussed. 

1. Introduction 
The occurrence of convective motions in horizontal layers of fluid heated from 

below has been a source of continual study for over half a century. Generally, one 
associates the names of Benard and Rayleigh with this phenomenon. The former 
was the first to report on the highly regular structure assumed by the medium 
owing to thermal convection, whereas the latter, using a linearized stability 
analysis, was the first to predict theoretically certain key features of this con- 
vective flow for the case of fluid layers of infinite horizontal extent subject to 
buoyancy forces. Rayleigh’s work has long served as the basis for more detailed 
linear treatments such as those put forth by Pellew & Southwell (1940), Sparrow, 
Goldstein & Jonsson (1964) and Hurle, Jakeman & Pike (1967); however, an 
explanation of some of the most remarkable aspects of these convective motions, 
for example the preferred shape and size of the cellular structure and the direc- 
tion of circulation inside the cells, lies beyond the reach of linear stability theory. 

Specifically, the present work is concerned with the generally accepted view 
regarding the effect that a temperature-dependent viscosity has upon the direc- 
tion of the circulating fluid. Graham (1933) was the first to suggest that the 
direction of flow in cellular convection was determined by the variation of the 

t Present address : Chicago Bridge and Iron, Plainfield, Illinois. 
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viscosity with temperature, and was such that the fluid motion at the centre of 
the cell was in the direction of increasing kinematic viscosity. This hypothesis 
seems to have been further strengthened by Tippelskirch's (1956) experiments 
using liquid sulphur (the viscosity of which increases sharply with temperature 
in the range 153-190 "C while decreasing with temperature everywhere else) in 
which flow reversal was noted when the temperature exceeded 153 "C. However, 
this matter was settled only recently for the case of thermal convection in a layer 
of infinite horizontal extent, thanks to the non-linear analyses of Palm (1960)) 
Segel & Stuart (1962)) Palm & Oiann (1964)) Segel (1965)) Busse (1967) and 
Palm, Ellingsen & Gjevik (1967). 

In what follows, the question of whether, and if so to what extent, the tempera- 
ture coefficient of the viscosity does in fact determine any observed preferred 
direction of flow in buoyancy-driven cellular convection will be investigated for 
the case of axisymmetric motions in a cylindrical geometry. To this end, steady- 
state numerical solutions to the non-linear equations of momentum; mass and 
energy, incorporating a temperature-dependent viscosity, will be presented for 
a large variety of boundary conditions, following which certain key predictions 
from the numerical results will be compared with appropriate experimental 
observations in a cylindrical cell heated from below and having insulating lateral 
boundaries. Finally, the numerical and experimental findings regarding the 
sense of circulation will be compared with the predictions of an analytical 
solution which applies within a small region near the critical point of linear 
stability. 

2. Numerical analysis 
The mathematical model is set up in terms of the Boussinesq equations with 

p = po (1 - p (T - To)) in the gravitational term and with a temperature-dependent 

The fluid is assumed to be confined within the cylindrical region 0 6 r' 6 rad ,  
0 < z' 6 d,  having its lateral boundary r' = r,d insulated and its horizontal 
bounding surfaces z' = 0, d maintained, respectively, a t  constant temperatures 
To and TI.? Only axisymmetric motions will be considered since these lend 
themselves to a relatively straightforward numerical computation. Hence, 
expressing the steady-state equations of motion and heat transport in this 
modified Boussinesq approximation in terms of the dimensionless stream func- 
tion $, the vorticity w and the temperature 0 defined by 

t In a few cases, the more general temperature boundary condition (&/az) +N,O = - 1 
was employed a t  z = 1. Here N, denotes the vapour-phase Nusselt number, with N, = co or 0 
corresponding, respectively, to an isothermal or a constant-flux surface. 
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where P and R are, respectively, the Prandtl and the Rayleigh numbers 

g is the acceleration of gravity and k and cP are the thermal conductivity and the 
heat capacity of the fluid assumed constant. These equations were next approxi- 
mated by finite differences using the centred three-point expressions for both 
first and second derivatives and then rearranged into iteration formulas for the 
computation of successive values of the stream function, the temperature and 
the vorticity. Both the r- and the z-axes were subdivided into equal intervals. 
As for the boundary conditions, these were written using an uncentred derivative 
form so that the conditions on the boundaries of the computational region were 
expressed in terms of the adjacent points within the domain. 

The numerical calculations were begun by setting the vorticity and the 
stream function equal to zero and by imposing an initial temperature profile of 
the form 

with ]A1 d 1 and oreplaced by 1 whenever the right-hand side exceeded unity. 
The iterations were then continued by means of a straightforward relaxation 
technique until, after two successive iterations, the relative change of all the 
corresponding quantities within the domain became everywhere less than one 
part in a thousand. 

The accuracy of the numerical solution was inferred by comparing the average 
Nusselt numbers No and fll, defined by 

% =  ( l - z ) [ l + ~ ( r - ~ ~ ) ] ,  (4) 
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FIGURE 1. Streamlines and isotherms. (a) Upflow at the centre. Run no. 1 (table 1). 
( b )  Downflow at the centre. Run no. 1 (table 1). 

which, owing to energy conservation requirements, should be identical. This 
condition was met in all the cases to be reported below, where x,, and XI were 
always within 1 yo of one another. 

As seen in table 1, which summarizes all the cases treated numerically, calcula- 
tions were performed for numerous combinations of P ,  R and 7, and for both solid 
and free upper, lower and lateral boundaries. Here, the open entries represent 
cases for which numerical solutions were not obtained because it was felt that 
these would yield little if any new information regarding the nature of the steady 
flow, and also because of the excessive computational time necessary for con- 
vergence (this was particularly true for values of R close to the critical, as in 
run 16, where a large increase in the time required for convergence was noted as 
the critical point was approached). Also, for any given set of boundary conditions, 
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FIGURE 2. Streamlines and isotherms. (a) Upflow at the centre. Run no. 14 (table 1). 
( b )  Downflow at the centre. Run no. 15 (table 1). 
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the parameter ra was kept fixed at  a value approximately equal to that given 
by the linear theory for the size of the cell at the critical point. A few representa- 
tive streamlines and isotherms are shown in figures 1 and 2. 

For the purpose of the present discussion, perhaps the most important result 
of these numerical computations was that, in every case considered, the iteration 
scheme was found to converge to either of two different steady-state solutions 
depending on the nature of the imposed initial temperature field. Thus, if the 
initial parabolic temperature disturbance was such as to increase the buoyancy 
near the centre of the cylindrical region, i.e. A > 0 in (4), the system converged 
to an axisymmetric solution in which the vertical velocity component was 
positive near the centre ( r  = 0) and negative near the lateral boundary ( r  = ra). 
Conversely, if A < 0, the steady flow was downward near the centre and upward 
near the sides. These solutions have the following interesting properties: 

(a )  Constant-viscosity case (7 = 0) 

Let the subscripts d and u denote, respectively, the solutions with downflow or 
upflow at the centre. Then, provided the boundary conditions at  x = 0 are 
identical with those at z = 1, direct substitution into (1) to (3) with 7 = 0 leads 
immediately to the result that 

( 5 )  {$&, 4 ,  ear, 4 ,  w d r ,  .4) = - { k ( r ,  1 - 4 ,  %&(., 1 - z ) ,  wu(r, 1 - 41, 
in which W(r, x )  = &r, z )  - (1 - 2) .  

In fact, again for symmetric boundary conditions, a similar transformation can 
be employed for any assumed flow pattern (e.g. hexagons in a fluid layer of 
infinite horizontal extent), thus establishing that, if one solution exists, a second 
solution must also be present having an opposite flow direction at  the cell centres. 

As expected, the numerical results were found to satisfy (5). However, for 
P = 1, the corresponding values agreed only to within 0.5 % because, owing to 
the higher velocities present, the time required for convergence of the numerical 
scheme increased to a point where it became impracticable to compute a com- 
pletely convergent solution. 

On the other hand, for the more general case of asymmetric boundary condi- 
tions, the presence of two solutions cannot be established analytically since (5) 
no longer applies. However, the fact that two apparently equally stable solutions 
were obtained numerically by an iterative technique which seemed to converge 
with equal ease to either one, does suggest strongly that two axisymmetric 
solutions do indeed exist in every case, irrespective of the boundary conditions 
a t z = O a n d z =  1. 

(b )  Variable viscosity (7 + 0) 
Once again (5) ceases to apply if 7 $: 0 and, hence, it should be expected that the 
numerical solutions for upflow and downflow at the centre would be somewhat 
different if compared according to (5). This was confirmed by a detailed examina- 
tion of the raw numerical data, which, for [ 7 I = 0.4, revealed differences as large 
as 30% between like quantities. Surprisingly, though, some of the gross pro- 
perties of the two solutions, such as the corresponding values for 3 and I$lmax, 
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were always found to be approximately the same, as can be seen from table 1 and 
figures 1 and 2. The only exception appeared to be the location of the vortex 
centre, which, even for 7 = 0 but for symmetric boundary conditions, was found 
to be near the lateral boundary, somewhat above the centreline z = t for the 
case of upflow at the centre and somewhat below for downflow. This asymmetry 
is evident in figure 1 and will be further examined in the next section dealing with 
the experimental work. 

In  conclusion, the most important result of the numerical calculations was the 
observation that the presence of a temperature-dependent viscosity in no way 
affected the stability or the rate of convergence of the numerical iteration, for 
zither the upflow or the downflow case and for all the various combinations of 
boundary conditions investigated, thus strongly suggesting that two physically 
realizable solutions do in fact exist within that range of Rayleigh and Prandtl 
numbers for which axisymmetric motions in a cylindrical cell are permissible. 
This assertion was tested experimentally in the manner described below. 

3. Experimental study 
Experimental apparatus 

The experiments were conducted in a cylindrical cell whose lateral wall con- 
sisted of a 0.64 em thick lucite (methyl methacrylate) circular cylinder, 3 em high 
and 5.7 em in internal diameter. One end of this cylinder was cemented to a 
0.95 em thick circular copper plate, of the same outside diameter as the lucite 
and containing two interior concentric channels through which water could be 
circulated. A similar copper plate with only one circular channel was used in some 
of the experiments to simulate a rigid isothermal top. Copper-constantan 
thermocouples embedded in the centre of the plates served to monitor their 
temperature. The working fluid was a very viscous oil-white oil 15, which has a 
temperature-dependent viscosity corresponding to 7 - 0.06. Also, to simulate 
the numerical model (runs 1, 2), most of the experiments were restricted to flows 
consisting of a single convective cell and to overall vertical temperature differ- 
ences of about 1 "C which gave values for R close enough to the critical Rayleigh 
number to ensure a steady motion. 

Experimental procedure and results 
(a) Solid-isothermal upper surface. The cylindrical cell was first filled with oil, 

at  room temperature, containing small amounts of nitrogen-filled glass spheres, 
13-15pmindiameter, to serveastracers. The cellwas thencoveredwiththecopper 
plate and the whole system allowed to reach equilibrium. After this, the 
temperature difference between the top and bottom surfaces was gradually 
increased at  a rate of less than l 0 C  per hour, a time scale comparable to the 
characteristic time for unsteady heat conduction, by circulating cooling and 
heating water from two constant-temperature baths through the copper plates. 
Such a rate of heating was believed to  be slow enough to allow the establishment 
of an approximately linear temperature profile prior to the onset of convection. 
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When the temperature difference between the top and the bottom plates 
reached, approximately, 0*5"C, the fluid was seen to move, especially near the 
centre of the cell. In fact, the lowest temperature difference at  which this motion 
could be detected was 0.45"C, corresponding to a Rayleigh number of about 
4300, which represents, therefore, an approximate upper bound for the stability 
criterion appropriate to this particular geometry. In  addition, long time- 
exposures taken across different diameters of the cylinder for a wide range of 
values of the Rayleigh numbers (4300 to 12,000) showed that the particle paths 
were closed and axisymmetric, indicating that the overall flow pattern consti- 
tuted a symmetric toroidal cell. Occasionally, and only when large initial heating 
rates were used, two other flow patterns were seen which were asymmetric and 
which seemed to correspond to those observed earlier by Mitchell & Quinn (1966) 
in their experiments with gases in cylindrical geometries but at much higher 
Rayleigh numbers. However, these asymmetric motions, which were not steady 
in time and which tended to evolve slowly into a more or less symmetric toroidal 
flow, were never encountered a t  the lower heating rates (less than 1 "C per hour) 
used in most of the experiments. 

It was found throughout the experiments that two axisymmetric flow patterns 
having opposite flow directions near the centreline could always be produced for 
the case of two isothermal horizontal surfaces. Moreover, it was observed that 
the sense of circulation appeared to depend only on the curvature of the isotherms 
of the conduction profile, in that, when the isotherms were convex from above, 
i.e. when the warmer fluid was near the centre, the resulting motion was one of 
upflow at the centre, with the reverse being true when the conduction isotherms 
were concave from above. 

The fact that the lucite walls were somewhat imperfect insulators provided a 
means of establishing at will the curvature of the conduction isotherms. For 
example, by keeping the top and bottom plates slightly above room temperature, 
a lateral flux of heat away from the cylinder was set up at  the vertical boundary 
which cooled the oil near the wall and thereby caused a small convexity to 
develop in the conductive temperature profile. Similarly, a small concavity in 
the isotherms could be brought about by cooling both the top and the bottom 
plates to a temperature slightly below that of the room. In order to keep these 
lateral heat fluxes small, one of the plates was always kept as close to room 
temperature as possible, thus ensuring that the temperature of the oil was never 
more than, approximately, 1 "C above or below that of the surrounding air. 

Experiments were also performed to  test the influence of this lateral wall flux 
on the stability of the axisymmetric motion. Thus, after a steady flow pattern 
was established, the direction of the heat flux at the vertical walls was reversed 
by slowly raising (or lowering) both the top and bottom copper plate temperatures 
at  the same rate, until the mean temperature of the oil was slightly above (or 
below) that of the room. It was found that over a period of 3-4 h, by which 
time most of the tracers had either settled or become attached to the walls of 
the cylinder, both axisymmetric flow patterns remained unchanged by such 
disturbances. 

Aside from the sense of circulation, another characteristic feature of the flow 
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pattern was the location of the vortex centre, which was always found to lie near 
the vertical walls and placed asymmetrically with respect to a horizontal plane 
passing through the centre of the cylinder. As can be seen from figure 3, plate 1, 
the vortex centre was located above the middle plane when the flow was upwards 
at  the centre and below that plane when the flow was in the opposite direction, 
in qualitative agreement with the numerical results shown in figure 1. Moreover, 
the location of the vortex centre seemed to be independent of the Rayleigh 
number in the range 4300 to 12,000. 

( b )  Free upper surface. In  this case, the experiments did not correspond exactly 
to the numerical computations because of our inability to effectively control the 
temperature of the free surface. Consequently, although the experimental 
procedure was almost identical with that described above, the temperature of the 
lower copper plate had to be increased slowly but continuously in order to 
maintain a given Rayleigh number. Thus truly steady-state experiments could 
not be performed. 

Motion was detected for values of R as low as about 3200, which, for these 
particular boundary conditions, can be taken as an approximate upper bound 
for the critical Rayleigh number. In  addition, for extremely high rates of heating 
(more than 5'C/h) an asymmetric flow pattern resembling a slightly deformed 
longitudinal roll was sometimes observed at  the maximum depth (3  em) but never 
for smaller depths or slower rates of heating. 

The only flow pattern that was encountered regardless of depth for rates of 
heating of approximately 1 'C/h was an axisymmetric toroidal cell very similar 
to that observed in the case of two solid isothermal bounding surfaces. More- 
over, for mean oil temperatures higher than that of the surroundings, the motion 
was always upwards near the centre of the cell, a fact which is consistent with the 
prcscncc of convex pre-convective temperature profiles. This flow pattern was 
stable regardless of the magnitude of the Rayleigh number and was observed for 
hours without any sign of decay or transformation into an asymmetric motion. 

Methods were also found for producing concave conduction profiles and 
thereby generating a flow pattern descending along the centre. One such tech- 
nique consisted of using fairly large heating rates (around 4OC per hour) and 
taking advantage of the fact that lucite has a thermal diffusivity approximately 
15 yo larger than that of the oil. Thus, depending on the magnitude of the heating 
rate, the lucite wall could be made warmer than the oil at the onset of convection, 
thereby setting up an axisymmetric flow pattern with the fluid moving down- 
wards near the centre of the cell. This type of motion, once established, persisted 
for more than 1 h. Eventually, however, it was replaced by a transitory state 
having the appearance of a random flow of small amplitude, which later evolved 
into a symmetric motion with liquid moving upwards at  the centre of the cell. 
Nevertheless, it is felt that, if the heat flux at the lateral wall could have been 
eliminated, this axisymmetric flow pattern with downflow at the centre could 
also have been maintained for indefinite periods of time. 
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4. Non-linear analysis 
The numerical and experimental work described so far seems to have estab- 

lished rather conclusively that, in a cylindrical cell containing a fluid subject 
to buoyancy forces, two stable axisymmetric flow patterns are possible for values 
of the Rayleigh number exceeding the critical. This result may, however, not 
be applicable when the Rayleigh number is only slightly above the critical since, 
for obvious reasons, neither the experiments nor the numerical calculations 
could be extended right up to the critical point. It was felt, therefore, that a 
closer investigation of the present problem in the Rayleigh number regime near 
the critical point would be desirable, since such a study would serve to comple- 
ment the numerical and experimental work already described. This was accom- 
plished, using the perturbation technique developed by Busse (1967), for the 
mathematically simplest case of a free and insulating lateral boundary at  r = ra, 
and free and isothermal horizontal bounding surfaces at  z = 0 and z = 1. 

The analysis is of course complicated by the fact that, besides developing an 
analytic solution to the steady-state non-linear equations governing the con- 
vective motion, it is necessary that the stability of this flow to small disturbances 
be also examined. However, following Busse, it is possible to achieve both these 
objectives for small values of R - R, (R, = Yn4( 1 + 47 + O(q2)) denoting the 
critical Rayleigh number according to linear theory), by means of the formal 
series expansions in terms of e,  the amplitude of the steady motion, and 7, 

for the primary flow, and 

with 

for the disturbance. These series, when substituted into the system of non-linear 
equations, yield a set of inhomogeneous equations to which, in general, a solution 
does not exist unless the quantities R,, are chosen so as to satisfy an appropriate 
solvability condition. The coefficients c,,, which determine the stability of the 
primary flow, can then be obtained in a straightforward manner. 

To conform with the numerical and experimental work, ya  was kept fixed at  
1-725, the value given by the linear constant property solution for the size of the 
cell at the critical point (Pellew & Southwell 1940). Also, the analysis dealt only 
with axisymmetric motions since it is known that asymmetric flows are strongly 
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damped near the critical point. And, finally, only axisymmetric disturbances 
were taken into account, because, for a region enclosed by a cylindrical boundary 
of fixed size, these are the only disturbances, satisfying the boundary conditions 
and the equations of motion and energy, that can possibly arise. For example, 
since only axisymmetric small disturbances $lo and ol0 need to be considered 
near the critical point, in view of the fact that the corresponding asymmetric 
disturbances are strongly damped, it can easily be shown that gl1 and gl1 satisfy 
an equation of the form 

where 9 is a linear operator and H ,  which depends explicitly on $lo and gl0, 
is independent of the polar angle 4. Hence, gll and gl1, and, by a similar argument, 
all succeeding terms in (7), must remain axisymmetric provided R is close 
enough to R,. 

As a result of many lengthy mathematical manipulations, the details of which 
can be obtained from the authors on request, it was found that: 

=WJ11,41) = H ,  

$1o(r, 4 = rJ-1 [(.rr/$) TI sin 7% 

Olo(r,z) = - ( li2/3.rr)J0[(n/.J2)9-]sin.rr~, 

$20(r, 4 = - Ilrzo(r) sin 2.rrG 

620(9-, z)  = - 0 2 0 ( ~ )  sin 2 m ,  

$ll@, 2) = rJ1 [(..I 42 )  9-1 @(z) ,  

O11(r, 2) = Jo r c 4  4 2 )  9-141(zL 

$10 = c"lCrlO(Y, 4, 
e,, = %o(', 4, 

$20 = 2 W 2 0 ( Y >  z ) ,  

6,, = 2a20(r ,  z ) ,  

$1, = Wl1(9-> 4, 
a;, = %(r,4, 

where c" is an arbitrary constant, and $20(r), OZo(r) and @(z),  Oll(z) are shown, 
respectively, in figures 4 and 5. Also, from the solvability conditions, 

I 
1 goo = gol = Cl0 = 0, 

with R,, and R,, seen plotted in figure 6. 
The principal result of this analysis is then that 

R-R, = €7Rll+e2R2o+ ..., (9a) 

(9b) (7 = sya,, + €%,, + . . . , 
from which the amplitude of the stable motions can be computed as a function 
of R. For example, if in (9a )  the third- and higher-order terms are neglected, then 
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-0004; . I I I I 1 I 
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-m2- -003, 0 0250 0500 0.750 1~OOO 1.250 1.500' 

-f Radius 

0 0250 0.500 0,750 1.000 1.250 1.500 725 
+ Radius 

FIGURE 4. Order (e2qo) solutions wa. Prandtl number. 

$20 = - $&) sin 2772, O,, = - 8&) sin 2772, 
uz0 = - 277Y,,(~) COB 2772, we, = - wzo(r) sin 2772. 

(a) P = 1000. ( b )  P = 1. ( c )  P = 0.01. 

725 
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FIGURE 5. Order (sly') solutions 
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FIGURE 6. Rao, R,,, ran, rll 'us. Prandtl number. 
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Two distinct cases arise depending on the sign of 7. 
(a)  7 < 0 (liquid case): equation (10) is seen plotted in figure 7(a ) .  Clearly, 

since according to (8) 

for all Prandtl numbers, there exists one stable solution with upflow at the centre 
when R is in the range 

\ XI: RlIV 
€=--=-- 

\ u20 2R20 

Unstable 1 
>o  

A-R, - - R-R, 
R20 

- 
E > o (downflow at centre) t- 6 > 0 (downflow at centre) 

(4 (b )  

FIGURE 7. R - R ,  us. amplitude. (a)  7 < 0. ( b )  7 > 0. 

and two stable solutions, one with a higher amplitude and with upflow at the 
centre, the other with a smaller amplitude and with downflow at the centre, 
when the Rayleigh number is greater than R,. 

(b)  7 > 0 (gas case): equation ( lo ) ,  with 7 > 0, is seen plotted in figure 7 (b).  
It is apparent that this case is identical to that considered above except that 
now the flow directions are reversed. 

As concerns the rate of heat transport, this can best be expressed in terms of 
the Nusselt number N ,  where 

This expression is seen plotted in figure 8. Interestingly enough, although, in 
principle, (9) and (11) only apply if B < 1, the value for N as computed from 
(1 1) for R = 700, E N 3, is equal to 1.25, in very close agreement with the value 
1.267 obtained from the numerical solution of the full equations (cf. table 1). 
This, however, is probably little more than a coincidence. 
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After the completion of the present analysis, it  was called to the authors’ 
attention that Muller (1965) had developed an approximate solution to the same 
problem using Galerkin’s method and had arrived at  the following results : 

A,,=--+J( 1 P  r+BP”a a ), 
2 a -  

with p = 4.477 and a = 2.515 for the case of infinite Prandtl number. In  the 
notation of the present paper, 

IT 7i-2 177 A - - - - -E  R =-a,  R , , = - - - P ,  
- 4 2  2o r 4 2  

FIGURE 8. Nusselt number v8. the Rayleigh number near the critical point. 

so that, according to Muller’s solution, R2, = 12.4 and R,, = - 9.92. These values 
compare very favourably with the more accurate results of the present study, 
according to which, for P % 1, R,, = 12.56 and R,, = - 9-22. 

The results obtained above are, in some sense, also qualitatively similar to 
those arrived at previously by Palm (1960), Segel & Stuart (1962), Palm & 0iann 
(1964), Segel (1965), Busse (1967) and Palm, Ellingsen & Gjevik (1967), for the 
problem of thermal convection with hexagonal cells in a fluid layer of infinite 
horizontal extent, in that, in both cases, only one of the two solutions is found 
to remain stable in the subcritical r6gime. However, the two cases do differ in 
one important respect in that the appropriate hexagonal solution remains un- 
stable even beyond the critical point whereas, as seen in figure 7(a) and (b) ,  
both solutions are stable in the present problem when R > R,. 

This disparity can easily be explained by referring to Busse (1967), who 
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showed that ‘hexagonal’ disturbances on a hexagonal cell of fixed size have 
growth oonstants given, respectively, by (in the present notation) : 

a5 = fT6 = 0,  

where M and L, are positive constants. Clearly, the first of (12), which refers to 
the growth rate of an ‘amplitude’-type disturbance, is identical with (9 b )  if account 
is taken of (8); in contrast, g2, b3 and c4 (which, incidentally, are responsible for 
the instability of the second solution even when R > R,) have no counterpart 
in our analysis since here, as explained earlier, asymmetric disturbances are 
automatically excluded by the presence of a fixed cylindrical boundary. Thus 
it is perhaps not surprising that the hexagonal solution possesses a lower degree 
of stability than the cylindrical solution obtained here, since a layer of infinite 
horizontal extent is naturally subject to a much wider class of disturbances than 
the cylindrical layer considered here. 

5. Conclusions 
Steady-state numerical solutions to the non-linear equations of momentum, 

mass and energy, incorporating a temperature-dependent viscosity, were 
obtained for the case of buoyancy-driven convection in a cylindrical geometry 
and for various combinations of boundary conditions. Two axisymmetric solu- 
tions were found for each case considered. These two solutions, although exhibit- 
ing opposite flow directions at  the centre of the cell, were similar in almost every 
other respect, thereby strongly suggesting that, for any given set of boundary 
conditions, two physically realizable solutions do in fact exist within the range 
of Rayleigh numbers investigated. This assertion was further strengthened by 
the experimental observation of two stable axisymmetric motions in a completely 
confined cylindrical cell. 

An analytical solution using the perturbation technique described by Busse 
(1967) was also developed for Rayleigh numbers close to the critical. It was found 
that, for a fluid having a variable viscosity, subcritical flows exist for which only 
one of the steady-state solutions remains stable, but, since the range of Rayleigh 
numbers where this occurs is so narrow, i.e. R - R, N O( lo), the existence of 
this region is probably of little more than academic interest. In fact, attempts 
to reach this region either experimentally or by means of a numerical solution of 
the basic equations proved quite unsuccessful, the latter because of the very rapid 
increase in the time required for convergence of the iteration scheme as the 
critical Rayleigh number was approached. 
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FIGURE 3. Solid-isothermal upper surface. (a)  Downflow at the centre, R = 8000. 
(b)  Upflow at the centre, R = 8200. 
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